

The Almond Conference

Pest Management Update

Bob Curtis, ABC (Moderator) David Haviland, UCCE, Kern County Kris Tollerup, UCCE IPM Advisor Emily Symmes, UCCE IPM Advisor Brad Hanson, UC Davis Jim Adaskaveg, UC Riverside

David Haviland UCCE, Kern County

Pest Management Update and Sampling: Insects, Weeds and Diseases

Integrated Pest Management in Almonds

- · Information is readily available
 - UC Statewide IPM program, Farm Advisors, Almond Board
- The toolbox has never been so full
 - Sampling methods
 - Pheromone traps
 - Economic injury levels
 - Cultural controls
 - Biological controls
- · When insecticides are needed
 - Numerous insecticides representing many modes of action
 - Multiple options available for nearly all situations
 - Mating disruption

Pesticide Use Trends- Insecticides

- Increasing annually due to increased acreage
- Increasing annually on a per acre basis
- Cotton is no longer king... almonds are
 - This puts a target on the back of the industry
- Pesticide use needs to be based on sampling and thresholds when other control options are exhausted

Chlorpyrifos Use in Almonds

- Functionally it is the last broad spectrum insecticide available to almond growers that is not an pyrethroid
- Off-site movement is a concern
 - Dormant treatments and water
 - Found in regional monitoring efforts
 - High emitter of VOCs
- DPR under pressure to restrict use
- Critical Uses Plan was developed (ABC/University/DPR)
 - Collaborative effort by ABC, Univ. of California, and CDPR
 - Goal of identifying prudent uses
 - Goal to maintain availability
- Chlorpyrifos now a restricted material
 - Has to be on permit, requires PCA recommendation, requires NOI
- Proposed air quality regulations
 - Low-VOC formulation required after May 1

	Identifying and Managing Critical Uses of Chlorpyrifos Against Key Pests of Alfalfa, Almonds, Citrus and Cotton
UC↓IPM	
	CDPR Agreement Number 13-C0054 A Report Submitted to the California Department of Pesticide Regulation October 31, 2014
	Prepired By: University of California Agriculture and Natural Resources UC Statewide IPM Program Kearing: Agricultural Research Center 9240 Sorth Renchend Avenue Parlier, CA 93648
	University of California Agriculture and Natural Resources

Crop Team Leaders- Bob Curtis, Gabriele Ludwig

Members- Art Bowman, Mike Strmiska, David Haviland, Brad Higbee, Rob Kiss, Mel Machado, Jay Payne, Kris Tollerup, Danielle Veenstra

Leaffooted bug update

- WARNING: Leaffooted bug populations in the ٠ southern San Joaquin Valley are at all-time highs
 - LFB completed an extra generation this year
 - Populations are comparable or higher than fall 2005
- Appropriate winter response
 - If you find an aggregation, don't kill it. Monitor it
 - Watch weather. A good freeze could solve all potential problems
 - A mild winter could lead to a repeat of 2006
- Spring treatments should be based on monitoring (avoid overreacting)
 - Primary concern is March to May
 - Bugs in trees- pole sampling
 - Gummosis on nuts

Insecticides for leaffooted bug

- Lorsban- industry standard
 - Excellent on contact, residual of 1 week
- Pyrethroids- Brigade and Warrior II
 - Excellent on contact, residual of 4+ weeks
- Abamectin- Agri-mek and others
 - Excellent on contact, no residual activity
- Belay, Bexar, Sivanto, Beleaf, Exirel, Sequoia
 - Some contact activity, no residual activity

Proposed air quality regulations

Pesticides make up about 6% of VOC emissions

- Biggest almond contributions are Brigade, Agri-Mek, Fujimite, Lorsban, Onager, Goal
 Use restrictions apply to:
- High-VOC products containing abamectin, chlorpyrifos, gibberellins, or oxyfluorfen
- SJV between May 1 and October 31
- To alfalfa, almonds, citrus, cotton, grapes, pistachios, or walnuts.

Almond grower adaptation to new regulations

- Switch to low-VOC abamectin and chlorpyrifos
 - Agri-Mek SC and Lorsban Advanced are excellent
- Voluntarily minimize use of high-VOC bifenthrin, fenpyroximate, hexythiazox
 - efficacy of low-VOC formulations debatable

Navel orangeworm trapping and management

- Options improving each year
- Mating disruption more practical
- Egg traps still available
- Pheromone trap knowledge increases annually
- Reasons for trapping
 - Improved application timing
 - Treatment thresholds
 - Evaluate insecticide efficacy
 - Confirm trap shutdown in Mating Disruption blocks
 - Determine moth sources (internal or external)
 - Compare pest density across seasons

NOW traps

- Egg traps still valuable
 - Degree-day models are still based on egg traps
- Pheromone traps are available
 - Use in thresholds not established
 - May provide assistance with treatment timing
 - Better resolution than egg traps in 2nd/3rd flights
 - Creative uses
 - Residual effects of insecticides that kill adults
 - Document shut-down in mating disruption orchards

48 hr mortality tables

NOW Pyrethroid Resistance

B. Higbee, Paramount Farming Co.

RF=Resistance factor = LC₅₀ of field strain/LC₅₀ of USDA strain
 Bifenthrin is evaluated as a surrogate for all pyrethroids (Brigade, other bifenthrin products, Danitol, Warrior II, Voliam XPress, Pounce, Ambush, other permethrins)

-0 m me	i cancy cab	103								
	Low or no bifenthrin						High bifenthrin			
	LC50 RF				LCS	50	R	۲F		
Year	Male	Female	Male	Female		Year	Male	Female	Male	Female
2009	0.7	0.5	1.3	0.8		2009	0.3	0.5	0.6	0.8
2010	2.1	2.1	2	2		2010	1.35	1.8	1.3	1.65
2011	1	1.1	0.7	0.75		2011	1.7	2.1	1.2	1.5
2012	1.8	2.35	2.4	3.5		2012	2.4	2.5	3.1	3.8
2013	5.4/5.3	6.6/6.1	4.0/3.9	4.8/4.5		2013	7.9	8.8	5.8	6.5
2014	6.3/7.2	6.4/7.9	6.4/7.3	7.8/9.6		2014	10.6-13.8	10-13.9	10.8-14	12.1-17
RF=Resis	tance factor	$r = LC_{50}$ of field	eld strain/L	C ₅₀ of USE	DA strain					

Monitoring for spider mites

- Tolerate low mite population early in the season
- · Biological control organisms get established
- Monitor mite densities (presence/absence on leaves)
- If less than 1/3 of leaves are infested, do not treat, mites will increase slowly and biocontrol can keep up
- If more than 1/3 of leaves are infested, mite growth turns geometric and biocontrol cannot keep up, treat with a miticide that kills mites but maintains biocontrol organisms
- Miticide controls most of the mites, predators eat up any mites that survive
- Predator/prey ratios typically remain balanced for the rest of the season

Southern SJV experience of PCAs using monitoring and thresholds

- Spring 2013- Lots of mites and few beneficial organisms suggested that an aggressive approach to mite management was needed to prevent defoliation. Multiple miticide applications were made
- Summer 2013- Lack of mites and presence of beneficials led many growers to skip mite sprays at hull split
- Late winter 2014- Many growers concerned about mites again in 2014, especially due to dry winter, early heat, and tree stress from lack of irrigation
- Spring 2014- Monitoring showed elevated biological control, no need to treat
- Summer 2014- PCAs using monitoring and thresholds averaged one miticide application for the season

Pollinator safety

- Almond growers rely on bees for production
- Protection of bees during bloom has always been a priority of almond growers
- Pesticide labels include specific guidelines related to bee safety and must be followed
- On rare occasions, insecticides used legally at bloom in combination with fungicides have resulted in reduced brood health
- The ABC and Univ. of CA have revised PTB guidelines to recommend that management, if needed, be done in the dormant season or during 'May sprays'

WHY SHOULD GROWERS AND OTHERS INVOLVED IN ALMOND POLLINATION CARE

almonds

Using years that are been to be concerned out which in or demonstrate the large sent heat in a final data was alread which in the small area was parameters — and all bacteria heat was alread to parameters — and was heatly, stong sector (Final, best area solution). The small parameters parameters are alread on the term back and and area was alread parameters in the small parameters are parameters and another throughout the system, the term back area alread another similar to the back that are a parameters are parameters and another that was back that are a parameters are back and another the small the term of back that are your parameters the small material transmission back and back that are your parameters the small material transmission back and back that are parameters and the small back that are alread the strength and back that the strength and the small back that are defined as the strength and the defined back that the strength and the str

Of particular concerns at this time to now to manage the use of particontrol mainstain is says, that materias their possible reparts on hows, when it is importent that grows of a direct involvement that management processes to support the health, and for those whose we let give in heavy to particular, to account the health may only outing the polihadion season, but outing the entitie year.

The following pages will not the management problems that executin acquired will be well Amend Marati of California, and athen, takes determined will promote the head of chronic years and problem them the ensurmative that promote the head of chronic years and problem them the ensurmative that provide a neglected and problem atmos of chronic White many of these provides are generally applicable atmos of ones come or extension casedhs.

The occurrent operation devices for the protect hole, but shares the electronic ordering access. Four is of protections on electronic ordering and the 1. Marcine source protein access and access a

California Jumond growers and others involved in the poliination proces

A PACIFIC NORTHWEST EXTENSION PUBLICATION • PNW 591 Dregon State University = University of Idaho • Washington State University

Kris Tollerup UCCE IPM Advisor

Sampling: The "How" for Navel Orangeworm and Leaffooted Bug

Kris Tollerup, University of California Cooperative Extension Advisor, IPM, Kearney Agricultural Research and Extension Center

Sampling: The How for Navel Orangeworm

- Egg traps constructed from modified 50-dram vial filled 50% with almond meal plus 10% wt/wt crude almond oil. HOWEVER, food-grade almond meal works well.
 - Begin 1st week of April.
 - One trap / 10 acres or minimum of 4 / orchard.
 - Divide large acreage into sprayable blocks.
 - Hang traps at head-height
 - North side of tree (non-Pareil) & 1 to 3 ft inside canopy.
 - · Avoid water hazard.
 - Check 2x / week until biofix
 - First of two consecutive dates on which eggs increase on 75% of traps.

Sampling: The How for Navel Orangeworm

- Continue monitoring traps, remove eggs as you continue.
- Replace bait each 4 weeks.
- Eggs are flat, laid primarily on ridges of trap
 - Eggs white when first laid then turn orange-red prior to hatching.
- Graph egg numbers on monitoring form provided by UC Pest Guidelines (http://www.ipm.ucanr.edu/PMG/C003/almondorngwrmeggtrap.pdf.)
 - Biofix: Begin accumulation of degree-days.
 - Data provides information when new generation begins egg-laying.
 - Use data to verify degree-day calculation.

Sampling: The How for Navel Orangeworm

- Pheromone traps: Delta or white wing sticky trap baited with female synthetic sex pheromone.
- Hang in orchard mid-March
 - Use in conjunction with egg traps.
- Hang in tree at approximately head height.
- Count moths at least once per week.
- Change lure ~ 4 to 6 weeks.
- Change sticky card when "saturated".
- Careful not to confuse meal moth for NOW.
- Understanding of male NOW capture in progress

Sampling: The How for Leaffooted Bug

- Beat trays
 - Easy to detect species in canopy.
 - Immediate information.
- Poles
 - 8-ft pole used to strike upper limbs
 - Count the number of LFB which fly.
- Damaged nuts, in tree and on ground
 - Indicates presences of LFB.
 - Can estimate percentage of damage nuts.
 - Confirm damage by cutting across damage area.
- Critical period to sample
 - March and April.
- Overwintering aggregations.

Sampling: The How for Leaffooted Bug

- Limiting issues
 - No economic injury level.
 - Small population can cause substantial damage.
 - Pheromone not yet understood.
 - LFB part of large-bug complex.
 - Species change over the season.
 - Shell hardness differs; affects damage.
 - LFB is long-lived with 3 and a partial 4th generation per season.

• Work to improve sampling is in progress.

Sampling: The How for Spider Mites

- Sequential binomial sampling plan
 - Weekly, May through August.
 - Prior to July, focus on hot-spots.
 - Minimum of 5 trees/sampling area, 15 leaves/tree.
 - Examine leaves for spider mite adults, eggs, and natural enemies.
 - Note number of leaves with mites/eggs and with natural enemies.
 - Post 1 July, monitor whole orchard
 - Separate orchard into units that can be sprayed separately.

Sequential Sampling

Sampling: The How for Spider Mites

					Predators absent		predators present	
Tree number	Total leaves sampled	No. leaves W/mites/tree	Cumulative no. leaves W/mites	No. leaves w/predatory mites/six spotted thrips	Don't treat (if total leavs w/mites is)	Treat (if total leavs w/mites is)	Don't treat (if total leavs w/mites is)	Treat (if total leavs w/mites is)
1	15	5	5	0				
2	30	2	7	0				
3	45	5	12	0				
4	60	5	17	0				
5	75	11	28	0	≤27	≥40	≤12	≥24
6	90	10	38	0	≤33	≥48	≤15	≥28
7	105	7	45	0	≤39	≥55	≤18	≥31
8	120	12	57	0	≤45	≥62	≤21	≥35
9	135	11	68	0	≤51	≥69	≤23	≥43
10	150	15	83	0	≤57	≥76	≤26	≥46

Emily Symmes UCCE IPM Advisor

Pest Management Update & Sampling: Peach Twig Borer and San Jose Scale

Almond Conference

Emily J. Symmes, PhD Area IPM Advisor, Sacramento Valley University of California Cooperative Extension University of California Statewide IPM Program

PTB Bloom Monitoring – Hibernacula

- Weekly beginning at popcorn stage
- Examine 10 hibernacula per orchard
 - Limb crotches or bark cracks, especially 2-3 year old wood
 - Cut small wedges of bark around hibernacula
 - Pinch bark to open hibernacula looking for presence of larva
- Bt treatments for moderate to high PTB populations
 - 20-40% larval emergence
 - 7-10 days later or 80-100% larval emergence
 - Third possible at 80-100% if emergence is spread out

PTB Spring Monitoring – Shoot Strikes

- Weekly beginning mid April
- Walk through orchard and cut down any shoot strikes
- Slice into shoot strikes to determine PTB or OFM
- Threshold
 - 4 or more shoot strikes per tree in mature orchard

PTB – Spring Monitoring for Treatment Timing

- Pheromone traps
- Hang by March 20 (south) and April 1 (north)
- 1 trap/20 acres, minimum 2/orchard
 - Uniform
 - Additional traps in hot spots
 - Shade
 - 6-8 ft high
 - 1-3 ft inside canopy
 - North tree quadrant
 - Minimum 5 trees from edge
- Check 2x/week until biofix
 - First date moths are consistently caught
- If shoot strike monitoring indicates treatment, begin accumulating DD and treat accordingly depending on material

Bergen days mean I Catage centry or data (Change seather Catage seather se		How to Ma Degree-D	nage Pest	ach Twig	Bor	er on Alm	onds				
STITE Peach Twig Borer on Almonds Model SWT : Lower/upper threshol: 50/88°F TW1 : Galaxiou/upper cdm relations: single and/horizontal andwape pests : Biofk:: The first block is the first date that moths are consistently found in traps. andwape pests : Addition/upper cdm relations: first date. Hex Amagement Culatine monitoment pests : To use these calculations: The first block is the first date and 500 degree-days accumulated from the block. wrave pests : Typical generation periods and spray timing generation : Start 2 and 3rd Earty Generation (capper-days) models degree-days : Start 2 and 3rd Earty Generation 200-4000 istimation : Typical generation (CMMHA (CIMIG #12, Durhum)) mask relations: CUMMHA (CIMIG #12, Durhum) : Time erration (CMMHA (CIMIG #12, Durhum)) mask relations: CUMMHA (CIMIG #12, Durhum) : Time erration (CMMHA (CIMIG #12, Durhum)) mask relations: CUMMHA (CIMIG #12, Durhum) : Time erration (CMMHA (CIMIG #12, Durhum)) mask relations: CUMMHA (CIMIG #12, Durhum) : Time erration (CMMHA (CIMIG #12, Durhum)) mask relations: CUMMHA (CIMIG #12, Durhum) : Start respected data were available from stato DUBHAA. See retrieval table. hote: Dhy 62% of respecetded data were available from stato DUBHAA. See r	i	Degr	How to us	se this mode	l in: al	monds, apricots or date Change	, nectar	rines, peaches, plums, or p Change backups Abou	orunes it degree-days		
PM2 - Lower/puper citresinais: Suger P - Calculation/uper citresinais: Suger P - Calculation/uper citresinais: Suger P - Calculation/uper citresinais: Suger P - Addition/uper citresinais: Suger P - Marking - Marking <td>S SITE</td> <td colspan="10">Peach Twig Borer on Almonds Model</td>	S SITE	Peach Twig Borer on Almonds Model									
andcoop pests andcoop pests addecoop p	PM?	Lower/up	per threshold	: 50/88°F	a a la ali	no/horizontal					
	endosena norte	Biofix: Th	a first biofix i	r the first da	to that	moths are cons	intently	found in trans			
To use these calculations: The first biofx is the first didt that most are consistently found in traps. Optimultant for first generation larves is between 400 are 500 degree-days accomulated from the bolt. Training for first generation larves is between 400 are 500 degree-days accomulated from the bolt. Training for first generation larves is between 400 are 500 degree-days accomulated from the bolt. Training for first generation larves is between 400 are 500 degree-days accomulated from the bolt. Ceneration larves is between 400 are 500 degree-days accomulated from the bolt. Training for first generation larves in first densation by the first densation are considered and beam time for a station by the first densation by the first densatis densation by the first densation by the first densation	anuscape pests	Additional	Information	on using this	model	: Pest Manager	neot Gui	deline			
microament pets microament pets time galaxy try terming microament pets try terming microament petrols and spray timing try terming microament petrols and spray timing try terming microament petrols and spray timing try terming microament periods and spray timing terming microament periods and sp	ral pests	- Huutuonu		on daing chi	mode	reac managem	ienc our	uenne			
Typical generation periods and spray timing conside gallery module & degree-days indegree days indegree days	avironment pests	To use these timing for firs	t generation	s: The first t arvae is bet	ween 4	the first date to 00 and 500 dec	hat moth	is are consistently found in accumulated from the bio	traps. Optimun		
terming Constraint Constraint Spray Timing (degree-days) analogk & & & & & & & & & & & & & & & & & & &	nvasive pests	Typical gene	ration perio	ds and snr	w timi	00					
Sendes galley (degree-days) (degree-days) models & degree-days 133 3rd Early Generation Later Generations information 133 130 130 400-50 300-400 mesther rations Westher rations 400-50 300-400 300-400 mas Time period Arr 15, 52014 Apr 15, 52014 Apr 15, 52014 Apr 15, 52014 horts Apr 15, 52014 49 84 16,527 13,78 a Apr 15, 2014 49 85 17,07 48,85 Apr 19, 2014 54 15,50 81,75.89 49,783	ery	Gener	tion Longth		ay cana	For	w Timir				
Ist 2nd 3rd Enry Generation Later Generations aformation 1030 1030 400-500 300-400 aformation 1030 1030 400-500 300-400 aformation Weather station: DURHAH A (CIMIS #12, Durham) Time period April 58, 2014 (97 days), 2014, 400-500 300-400 aformation Time period April 58, 2014 (98 yrs 32, 2014, enrowed on Docember 3, 2014 (97 days), enrowed on Docember 3, 2014 (97 days), enrowed on Durham Act, a Son retrieval table. Intermetical table. training Intermetical table. Notes April 5200 (199-90) Son retrieval table. April 5 2014 49 84 16.57 11.57 April 5214 April 6 2014 49 85 15.21 31.76 April 9.2014 51 801 15.50 66.33 April 9 2014 51 80 15.50 81.85 April 9.2014 51 80 15.80	oemies gallery	(degree-days)			(degree-days)						
Istimution IO30 IO30 IO30 IO30 400-500 300-400 as Weather station: DURHANA. (CIMIS # 12, Durham) Time period: April 15, 2014 M by 33, 2014, (ethrew of on December 3, 2014 (ethr days). Notes: Chirl 62% of requested data were available from station DURHANA. See retrieval table. mining Date Notes: Chirl 62% of requested data were available from station DURHANA. See retrieval table. Date Notes: Chirl 62% of requested data were available from station DURHANA. See retrieval table. April 5.2014 49 84 16.57 16.57 April 5.2014 49 85 15.20 31.78 April 5.2014 49 85 15.20 66.35 April 9.2014 51 80 15.50 81.58	models & degree-days	1st	2nd 3	Ird	Early (Generation		Later Generations			
Mesther station: DUBHANA A. (CHIG: 9:12, Durham) ms Mote: Only 62% of requested data were available from station DUBHANA. Inning Air temperatures (*P) Degree-days Date Air temperatures (*P) Degree-days Arr 15 2014 49 84 16.57 16.57 Arr 15 2014 49 84 15.21 31.78 Arr 16 2014 85 1.707 48.85 Arr 19 2014 54 85 15.50 81.85	information	1030	1030 1	030	40	00-500		300-400			
ms Time period: April 15, 2014 (b Way 31, 2014, retrieved on December 3, 2014 (c7 days). Note: Only 62% of requested at ware available than statuch DURHAN.A. See retrieval table. Date Air temperatures (*P) Degree-days April 52014 48 82 15.21 31.657 April 52014 48 82 15.21 31.78 April 52014 49 85 17.07 48.85 April 52014 51 80 15.50 63.55 April 2014 51 80 15.50 81.85 April 2014 51 80 15.50 81.85		Weather sta	tion: DURHA	M.A (CIMIS	#12. D	urham)					
Note: Only 62% of requested adds wire available from station DURIARA. See retrieval table. Inning Date Air temperatures (*P) Descendance Notes Apr 15 2016 49 84 16.57 16.57 Apr 15 2016 49 84 15.21 31.78 Apr 16 2016 49 85 15.20 66.35 Apr 17 2016 49 85 17.07 66.35 Apr 19 2016 51 80 15.50 81.85	ons	Time period	April 15, 20	14 to May 31	, 2014	, retrieved on D	ecembe	r 3, 2014 (47 days).			
Air temperatures (*P) Degree-days Noi * Na * Daily Accurulated Notes Apr 15 2014 49 44 16.57 16.57 Apr 16 2014 49 82 15.21 31.76 Apr 16 2014 49 82 15.21 31.76 Apr 17 2014 49 85 17.07 48.85 Apr 17 2014 49 81 17.50 66.85 Apr 19 2014 51 80 15.50 81.85 Apr 2016 54 86 15.59 97.83	tealaina	Note: Only 6.	2% of reques	ted data wer	e avail	able from statio	n DURH	AM.A. See retrieval table.			
Date Min Max Pairy Accumulated Notes Apr 15 2014 49 84 16.57 16.57 Apr 16 2014 48 82 15.21 33.76 Apr 17 2014 49 85 17.07 48.85 Apr 18 2014 54 8.1 17.50 66.35 Apr 19 2014 51 80 15.50 81.85		Air tem		temperatures (°F)		Degree-days					
Apr 15 2014 49 84 16 57 Apr 16 2014 48 82 15.21 31.76 Apr 17 2014 49 85 17.07 48.85 Apr 18 2014 54 81 17.75 66.35 Apr 2014 51 80 15.50 81.85 Apr 20204 51 80 15.98 97.83		Date	Min *	Max *	Daily	Accumulated	Notes				
Apr 16 2014 48 82 15 3.21 33.78 Apr 17 2014 49 85 17.07 48.85 Apr 18 2014 54 81 17.90 66.35 Apr 19 2014 51 80 15.30 81.85 Apr 19 2014 51 80 15.30 87.83		Apr 15 2014	49	84	16.57	16.57					
Apr: 17 20:14 49 85 17.07 48.85 Apr: 18 20:14 54 81 17.50 66.85 Apr: 19 20:14 51 800 15.50 81.85 Apr: 20 20:14 51 806 15.98 97.83		Apr 16 2014	48	82	15.21	31.78					
Apr 18 2014 54 81 17.50 66.35 Apr 19 2014 51 80 15.50 81.85 Apr 20 2014 44 86 15.98 97.83			40	85	17.07	48.85					
Apr 19 2014 51 80 15.50 81.85 Apr 20 2014 44 86 15.98 97.83		Apr 17 2014	49	05							
Apr 20 2014 44 86 15.98 97.83	5	Apr 17 2014 Apr 18 2014	54	81	17.50	66.35					
	5	Apr 17 2014 Apr 18 2014 Apr 19 2014	54 51	81 80	17.50 15.50	66.35 81.85					
Apr 21 2014 50 75 12.50 110.33	5	Apr 17 2014 Apr 18 2014 Apr 19 2014 Apr 20 2014	49 54 51 44	81 80 86	17.50 15.50 15.98	66.35 81.85 97.83					

128.97

146.75

151.51

U(

HOME

ON THE

Home & Agricult Natural

Exotic & Weed ga

Weather Pesticide Research

Publicat Events (

Links Glossary About us

Contact

Apr 25 2014

Apr 26 2014

PTB – Harvest Samples

- Establish orchard history to help inform treatment decisions
- Check efficacy of management program
- Collect & crack out 500 nuts per block
- Identify pest infestation

PTB – Harvest Samples

	PTB	OFM	NOW	ANT
Kernel	Shallow channels & surface groove on kernels	Shallow channels & surface groove on kernels	Deep chewing in nut	Scraping or peeling of kernel skin, deep hollowing of nut, "sawdust" present
Frass	None	Reddish brown; very little	White; often a lot	No
Webbing	No	No	Yes	No
Boring	No	No	Yes	Hollowing

San Jose Scale – Dormant Spur Sampling

- 1X/year
- 35-50 trees (random) per orchard or plot
- 100 spurs total
 - 2-3 spurs (random) from inside of each tree canopy near main scaffold
- Clip spur off at base
 - Include old spur wood along with past season's growth
- Sequential sample
- Examine 20 spurs at a time
 - Count live SJS
 - Note level of parasitization

SJS black cap stage

SJS – Dormant Spur Sampling Thresholds

# of Spurs	# of SJS infested spurs (not parasitized)
20	0: Stop sampling – no treatment necessary 1-3: Examine 20 more spurs ≥ 4: Stop sampling – treatment recommended
40	 Stop sampling – no treatment necessary 2-5: Examine 20 more spurs ≥ 6: Stop sampling – treatment recommended
60	 ≤ 3: Stop sampling – no treatment necessary 4-7: Examine 20 more spurs ≥ 8: Stop sampling – treatment recommended
80	 ≤ 5: Stop sampling – no treatment necessary 6-8: Examine 20 more spurs ≥ 9: Stop sampling – treatment recommended
100	< 10: No treatment necessary ≥ 10: Treatment recommended

SJS – Dormant Spur Sampling Form

Almonds-Dormant Spur Sampling

Supplement to UC IPM Pest Management Guidelines: Example Form

Directions:

- 1. To monitor for San Jose scale (SJS), European fruit lecanium (EFL), and mites, clip off 2 to 3 spurs randomly from each of 35 to 50 trees in the orchard, for a total of 100 spurs.
- 2. Using a hand lens or microscope, examine spurs for scales and mite eggs.
- 3. On the form below, note presence or absence of each pest on each spur for the first 20 spurs. Add up totals after every 20 spurs (including previous samples) and compare to treatment decision guidelines below. Continue as needed using page 2.

Grower/Orchard:

opur	Live	Parasitized		Mite	Spur	Live	Parasitized	
number	SJS	SJS	EFL	eggs	number	SJS	SJS	EFL
1					Totals from			
2					sample			
3					21			
4					22			
5					23			
6					24			
7					25			
8					26			
9					27			
10					28			
11					29			
12					30			
13					31	-		
14					32			
15					33			
16					34			
17					35			
18					36			
19					37			
20					29			
Total					30			
Freatment	4 or	Information	4 or		40			
threshold	more	only	more		Total			
eatment de	cisions:				Treatment	8 or	Information	6 or
It either S.	IS- or EF	L- intested spurs	are less	than 4 but more	threshold	more	only	more
right	amine an	other 20 spors a	nd recon	on chart to the	Treatment de	cisions		
If 4 or mor	e unpara	sitized scales of	one spe	cies are found.	 If grand tot 	tal of SJ	S- or EFL-infeste	d spurs is
treat.	para		and oper		more than	1, look a	at another 20 spu	irs and re
If no samp	les with s	scale are found,	stop sam	pling.	chart to the	e right.		-
Trend for p	nites if 20	% or more spurs	are infe	sted.	- in a or nigh	er, stop	sampling and tre	ar.
reat for n					It 1 eton e	amolina		

Spur	Live	Parasitized		Mite
number	SJS	SJS	EFL	eggs
Totals from				
prior				
sample 44				
42				
42				
43				
44				
40				
40				
47				
48				
49				
50				
51				
52				
53				
54				
55				
56				
57				
58				
59				
60				
Total				
Freatment	12 or	Information	8 or	
breehold	more	only	more	

Date

- more than 3, look at another 20 spurs and record on the chart on page 2.
- · If 8 or higher, stop sampling and treat.
- If 3 or less, stop sampling.
- Treat for mites if 20% or more spurs are infested.

Produced by the UC Statewide IPM Program

Spur	Live	Parasitized	FEI	Mite
Totals from	333	333	EFE	egga
prior sample				
61				
62				
63				
64				
65				
26				
67				
68				
69				
70				
71				
72				
73				
74				
75				
76				
77				
78				
79				
80				
Total				
Treatment	16 or	Information	9 or	
threshold	more	only	more	

· If grand total of either SJS- or EFL-infested spurs is less than 9 but more than 5. look at another 20 spurs and record on chart to the right.

If 9 or higher, stop sampling and treat.

Grower/Orchard

If 5 or less, stop sampling.

Treat for mites if 20% or more spurs are infested.

Live Parasitized Mite Spur number SJS SJS EFL eaas Totals from prior sample 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Total Treatment 20 or Information 10 or threshold more only more

Date

Treatment decisions:

Almond-Dormant Spur Sampling (continued)

- · If grand total of either SJS- or EFL-infested spurs is 10 or more, treat,
- If less than 10, no treatment is recommended. Treat for mites if 20% or more sours are infested.

UCTIPM

(rev.23 March 2009) Print copies of this form at www.ipm.ucdavis.edu/FORMS/

Produced by the UC Statewide IPM Program

Page 2

SJS – Spring Monitoring for Treatment Timing

- Pheromone traps
 - Detect male emergence
 - Detect presence of parasitoids
- 3-4 traps/block
- Hang by February 25 (south) & March 15 (north)
 - Uniform
 - Additional traps in hot spots
 - Shade
 - 6-7 ft high
 - North or east tree quadrant
 - Minimum 5 trees from edge
- Check 2X/week until biofix
 - First date males are consistently caught

• If spur samples indicated treatment, begin accumulating DD and treat accordingly depending on material

SJS – Spring Monitoring for Treatment Timing

- Sticky tape
 - Monitor crawler emergence to time treatments if warranted
- Wrap clear plastic tape around scaffold limbs
- If spur samples indicated treatment, begin accumulating DD and treat accordingly depending on material

Thank you & Questions?

Brad Hanson, UC Davis

Pest Management Update -Weeds

Brad Hanson

UC Davis Weed Science Program

T&V weed science team

- Brad Hanson Weed Extension Specialist
 - Chemical weed control, herbicide resistance, herbicide fate
- Lynn Sosnoskie Project Scientist
 - · Weed biology, ecology and resistance management
- Bahar Kutman Postdoctoral Researcher
 - Glyphosate and micronutrient interactions
- Sarah Morran-Postdoctoral Researcher
 - · Genetics and physiology of glyphosate resistance
- Seth Watkins Staff Research Associate
 - Orchard and vineyard herbicide efficacy and crop safety evaluations
- Marcelo Moretti PhD Student
 - · Mechanisms of resistance in glyphosate- and paraquat-resistant Conyza
- Caio Brunharo PhD Student
 - Glyphosate and glufosinate resistance in ryegrass
- Mariano Galla PhD Student
 - · Herbicide drift injury on walnut and other crops

Weed challenges in T&V

- Old favorites:
 - Normal mix of annual grasses and broadleaves
 - Challenge with perennial weeds, especially in new orchards or crops with fewer herbicide options
- New weed problems
 - Most of the "new" issues seem to be related to glyphosate resistance and/or shifting populations to tolerant species
- Changing control options
 - Less tillage, some new herbicides, water quantity-quality-delivery issues

Confirmed glyphosate resistance

(grouped by genus)	USA	СА	WA	OR
Palmer amaranth and com. waterhemp	\square	+		
Giant and common ragweed	∇			
Australian fingergrass				
Hairy fleabane and horseweed	\square	\square		
Sourgrass				
Junglerice	\checkmark	\checkmark		
Goosegrass		- +		
Wild poinsettia				
Italian and rigid ryegrass	\checkmark	\square		\checkmark
Ragweed parthenium				
	\checkmark	\checkmark		
Buckhorn plantain				
Johnsongrass	\checkmark			
Liverseedgrass				

Current T&V herbicide registration status

Herbicide Registration on California Tree and Vine Crops -(updated February 2014 - UC Weed Science)

	Herbicide-Common Name (example trade name)	Site of Action Group ¹	Almond	Decan becan	The Pistachio	Walnut	- Apple	- Pear	Apricot	Cherry	e Nectarine	Peach	Plum / Prune	Avocado	Citrus	Date	Fig	Grape	Kiwi	Olive	Pomegranate
	dichlobenil (Casoron)	L/20	N	N	N	N	R	R	N	R	N	N	N	N	N	Ν	N	R	N	N	N
	diuron (Karmex, Diurex)	C2/7	N	R	N	R	R	R	N	N	N	R	N	N	R	N	N	R	N	R	N
	EPTC (Eptam)	N/8	R	N	N	R	N	N	N	N	N	N	N	N	R	N	N	N	N	N	N
	flazasulfuron (Mission)	B/2	N	N	N	Ν	N	N	N	N	N	N	N	N	N	N	N	R	N	N	N
	flumioxazin (Chateau)	E/14	R	R	R	R	R	R	R	R	R	R	R	NB	NB	Ν	NB	R	N	R	R
	indaziflam (Alion)	L/29	R	R	R	R	R	R	R	R	R	R	R	N	R	N	N	R	N	R	Ν
Ce	isoxaben (Trellis)	L/21	R	R	R	R	NB	NB	NB	NB	NB	NB	NB	NB	NB	Ν	NB	R	NB	NB	NB
lei	napropamide (Devrinol)	K3/15	R	N	N	N	N	N	N	N	N	N	N	N	N	N	N	R	R	N	N
-er	norflurazon (Solicam)	F1/12	R	R	N	R	R	R	R	R	R	R	R	R	R	N	N	R	N	N	N
Б	oryzalin (Surflan)	K1/3	R	R	R	R	R	R	R	R	R	R	R	R	R	Ν	R	R	R	R	R
Fre	oxyfluorfen (Goal, GoalTender)	E/14	R	R	R	R	R	R	R	R	R	R	R	R	NB	R	R	R	R	R	R
~	pendimethalin (Prowl H2O)	K1/3	R	R	R	R	R	R	R	R	R	R	R	N	R	N	N	R	N	R	R
	penoxsulam (Pindar GT)	B/2	R	R	R	R	N	N	N	Ν	N	N	N	N	N	N	N	N	N	N	N
	pronamide (Kerb)	K1/3	N	N	Ν	N	R	R	R	R	R	R	R	N	N	Ν	N	R	N	N	Ν
	rimsulfuron (Matrix)	B / 2	R	R	R	R	R	R	R	R	R	R	R	N	R	Ν	N	R	N	N	N
	sulfentrazone (Zeus)	E/14	N	N	R	R	N	N	N	Ν	N	N	N	N	R	Ν	N	R	N	N	N
	simazine (Princep, Caliber 90)	C1/5	R	R	N	R	R	R	N	R^	R	R	N	R	R	N	N	R	N	R	N
	carfentrazone (Shark)	E/14	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
	clethodim (SelectMax)	A/1	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	N	R	Ν	N	NB	N	NB	N
	clove oil (Matratec)	NC ³	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
	2,4-D (Clean-crop, Orchard Master)	0/4	R	R	R	R	R	R	R	R	R	R	R	N	N	N	N	R	N	N	N
	diquat (<i>Diquat</i>)	D/22	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB
ũ	d-limonene (GreenMatch)	NC3	R	R	R	R	R	R	R	R	R	R	R	N	R	N	R	R	R	N	N
g	fluazifop-p-butyl (Fusilade)	A/1	NB	R	NB	NB	NB	NB	R	R	R	R	R	NB	R	NB	NB	R	N	NB	NB
a	glyphosate (Roundup)	G/9	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
ster	glufosinate (Rely 280)	H / 10	R	R	R	R	R	N	N	N	N	N	N	N	N	N	N	R	N	N	N
Bo	halosulfuron (Sandea)	B / 2	N	R	R	R	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
	paraquat (Gramoxone)	D / 22	R	R	R	R	R	R	R	R	R	R	R	R	R	N	R	R	R	R	R
	pelargonic acid (Scythe)	NC ³	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	N
	pyraflufen (Venue)	E / 14	R	R	R	R	R	R	R	R	R	R	R	N	N	R	R	R	R	R	R
	saflufenacil (<i>Treevix</i>)	E/14	R	N	R	R	R	R	N	N	N	N	N	N	R	N	N	N	N	N	N
	setnoxyam (Poast)	A/1	R	R	ĸ	ĸ	ĸ	ĸ	ĸ	R	R	ĸ	NB	NB	ĸ	NR	NR	ĸ	N	NR	NR

New glufosinate herbicides

- Glufosinate herbicides
 - Have be short in recent years, now off-patent
- Rely 280, Reckon 280, Glufosinate 280SL, Forfeit 280, Refer 280SL, Lifeline, (Cheetah – pending DPR)
 - Mostly same registrations as Rely 280 minor exceptions due to differences between master/package label
 - Similar recommendations for adjuvants/surfactant
 - Group 10 herbicide. POST activity only. Broadleaf and grass activity. Small amount of translocation.
 - In our testing, performance has been similar among brands
 - Recall that glufosinate <u>can</u> injury young almond trees

Alion – major label changes

- Several key changes
 - Modified use pattern in tree nuts, grape, stonefruit, pome fruit, olive
 - Citrus label not changed
 - Do not use in flood-irrigated systems
 - Age changes: almond/walnut/pistachio (1yr), grape (5yr), pome/stone/olive (3yr), citrus (1yr)
 - Soil OM rate restriction
 - <1% max rate 3.5 fl oz/A</p>
 - 1-3% rate 3.5 to 5 fl oz/A (5 oz max for grape if above 1%)
 - >3% rate 5 to 6.5 fl oz/A
 - Avoid spring applications for best performance
 - Will impact almond growers and PCAs

Important oxyfluorfen use change

- VOC regulations will affect use of Goal 2XL and similar herbicides in summer
 - Several high VOC pesticides have been under consideration for additional regulation during the summer (May-Oct) "ozone" season
 - The trigger was hit in 2014 so additional restrictions will be implemented
 - Max use rate of EC formulations of oxyfluorfen will be limited to 0.125 lb ai/A (1 pt of a 2lb product)
 - Does not affect rates Nov-April
 - Does not affect SC formulations (eg GoalTender)
 - Will impact almond growers and PCAs

In other T&V crops, may hear about:

- Sulfentrazone (Zeus)
 - Group 14 herbicide. PPO inhibitor
 - PRE and POST activity
 - Registered in early 2014 in CA
 - Grape, lemon, orange, pistachio, walnut (3 yrs or older)
 - Recommended rate 10-12 fl oz/A
 - Primarily broadleaf weed control, good suppression of nutsedge
 - · Good efficacy on GR conyza in a Parlier trial
 - Suppression of nutsedge 6 MAT in an Atwater trial
 - Best as part of a integrated program
 - Not likely to be registered in almond or stonefruit any time soon

In other T&V crops, may hear about:

- Flazasulfuron (Mission)
 - Group 2 herbicide, ALS inhibitor
- CA registrations on grape (3 yrs), citrus (5 yrs)
 - PRE and POST activity
 - Rate range 2.14-2.85 oz/A. Needs NIS for POST
 - Activity on some grasses and some broadleaves. Good suppression of sedges and kyllinga
 - Not registered in CA almond, future prospects not known?

Alion rates and tankmixes

Table 4. Selected weed control evaluations from 2013-14 comparison of Alion and other preemergence tankmix partners in an almond orchard near Wasco, CA. All treatments included a high rate of Rely 280 and Roundup Powermax to ensure good control of existing weeds. (Watkins, Moretti, and Hanson)

					61 DAT-	A		12	5 DAT-A	
				Annual	Shepherds-	Hairy	Overall	Junglerice	Hairy	Overall
				bluegrass	purse	fleabane			fleabane	
	Treatment		Rate			(% control			
1	Untreated Check			0	0	0	0	0	0	0
2	Alion	2.5	oz/a	100	100	88	97	97	97	97
3	Alion	3.5	oz/a	100	100	88	97	98	92	92
4	Alion	5	oz/a	100	100	40	85	99	69	76
5	Chateau	10	oz wt/a	100	100	70	94	75	57	77
6	Matrix	4	oz wt/a	100	85	83	95	58	40	40
7	Pindar GT	2.5	pt/a	92	100	93	97	87	96	92
8	Goaltender	4	pt/a	99	100	100	100	98	98	97
9	Alion	5	oz/a	100	100	90	97	100	97	97
	Chateau	6	oz wt/a							
10	Alion	5	oz/a	100	100	93	98	100	100	100
	Matrix	2	oz wt/a							
11	Alion	5	oz/a	100	100	65	95	99	86	96
	Pindar GT	1.5	pt/a							
12	Alion	5	oz/a	100	100	88	97	100	98	97
	Goaltender	2	pt/a							
LSI	D (P=.05)			6	7	31	9	24	34	25

Treatments applied on January 16, 2014. All treatments included Roundup Powermax at 2 qt/A, Rely 280 at 2 qt/A, and AMS at 2 qt/100 gal spray solution.

Table 6. Selected weed control evaluations from 2013-14 comparison of Alion and other preemergence tankmix and sequential partners in an almond orchard near Escalon, CA. All treatments included a high rate of Rely 280 and Roundup Powermax to ensure good control of existing weeds. (Watkins and Hanson)

					3 spike goose-	Crab- arass	Sow- thistle	Hairy fleabane	Spotted spurae	Overall	Overall	Overall
					grass	5			-1 - 5 -			
							122	2 DAT-A			164 DAT	196 DAT
	Treatment		Rate					% c	ontrol			
1	Untreated Check				0	0	0	0	0	0	0	10
2	Alion	2.5	oz/a	Α	45	100	100	88	100	80	70	55
3	Alion	3.5	oz/a	Α	45	100	93	100	100	86	78	68
4	Alion	5	oz/a	Α	70	100	100	98	100	92	85	83
5	Chateau	10	oz wt/a	Α	38	38	55	93	50	73	43	33
6	Matrix	4	oz wt/a	Α	38	50	43	98	0	73	50	28
7	Pindar GT	2.5	pt/a	Α	18	25	15	78	0	65	8	13
8	Goaltender	4	pt/a	Α	18	45	5	45	0	55	18	18
9	Alion	5	oz/a	Α	58	100	95	93	100	85	86	73
	Chateau	6	oz wt/a									
10	Alion	5	oz/a	Α	59	100	100	100	100	91	89	73
	Matrix	2	oz wt/a									
11	Alion	5	oz/a	Α	55	100	100	100	100	89	86	80
	Pindar GT	1.5	pt/a									
12	Alion	5	oz/a	Α	90	100	98	98	100	94	91	84
	Goaltender	2	pt/a									
13	Chateau	10	oz wt/a	A	60	100	100	98	100	94	93	84
	Alion	3.5	oz/a	В								
14	Chateau	12	oz wt/a	A	75	98	100	100	100	98	94	91
	Alion	5	oz/a	В								
15	Matrix	4	oz wt/a	A	63	100	100	100	100	97	94	84
	Alion	5	oz/a	В								
16	Alion	5	oz/a	A	75	100	100	100	100	98	96	91
4-	Alion	5	oz/a	<u> </u>		100	100	70	100			
17	Alion	3.5	oz/a	В	50	100	100	78	100	92	/1	60
18	Alion	5	oz/a	В	65	100	98	83	100	95	79	74
LSI	D (P=.05)				32	34	20	22	14	11	17	18

The 'A' timing was applied December 17, 2013 and the 'B' timing on March 19, 2014. All treatments at both timings included Roundup Powermax plus Rely 280 and AMS for control of emerged weeds.

Table 7. Preemergence weed control with Matrix and Alion combinations and sequential treatments in a walnut orchard trial conducted near Chico, CA in 2014. (Watkins and Hanson)

					Overall	Overall	Junglerice	Hairy	Overall
				timina	64 DAT-	124 DAT-A		fleabane	\
				unnig	A			100 DAT /	
							%		
1	Untreated Check				0	0	0	0	0
2	Matrix	4	oz wt/a	А	92	63	100	100	60
	Alion	5	fl oz/a	А					
3	Matrix	4	oz wt/a	AB	96	100	100	100	98
	Alion	2.5	fl oz/a	AB					
4	Matrix	4	oz wt/a	A	99	100	100	100	92
	Alion	2.5	fl oz/a	A					
	Matrix	2	oz wt/a	В					
	Treevix	1	oz wt/a	В					
5	Matrix	4	oz wt/a	A	96	97	95	100	76
	Alion	2.5	fl oz/a	A					
	Matrix	4	oz wt/a	В					
	Treevix	1	oz wt/a	В					
6	Matrix	4	oz wt/a	A	96	98	100	100	91
	Alion	2.5	fl oz/a	A					
	Matrix	2	oz wt/a	В					
	Prowl H2O	2	qt/a	В					
7	Matrix	4	oz wt/a	A	99	100	100	100	94
	Alion	2.5	fl oz/a	A					
	Matrix	4	oz wt/a	В					
	Prowl H2O	2	qt/a	В					
8	Matrix	4	oz wt/a	A	96	99	95	100	86
	Alion	2.5	fl oz/a	A					
	Matrix	2	oz wt/a	В					
	Alion	2.5	fl oz/a	В					
9	Matrix	4	oz wt/a	A	91	98	100	100	92
	Alion	2.5	fl oz/a	A					
	Matrix	4	oz wt/a	В					
	Alion	2.5	fl oz/a	B					
LSE	D (P=.05)				8	19	6	0	18

The 'A' timing was applied December 18, 2013 and the 'B' timing on March 20, 2014. The entire trial area was oversprayed with Roundup Powermax plus Rely 280 at the same time as the 'A' timing for control of emerged weeds.

A few random thoughts on almond weed management

- Think about your glyphosate formulations/rates AI concentration and surfactant loads vary
- Consider PRE herbicide programs and mixes
- · Consider sequential PRE applications to extend control into summer
- · Think about weed control over several seasons integrated weed management

Orchard Sampling Workshop – Weed Scouting Recap

Why orchard scouting matters for weed managers

- · Basing control decisions on actual weed problems
 - Control the weeds you KNOW you have (or will have)
- Avoid ineffective treatments
 - Using the wrong tool for the job wastes time and money
 - Will likely have to be retreated or controlled some other way
- Avoid overtreatment
 - Wastes money and time
 - Puts a higher than necessary load of pesticide in the environment
 - Crop safety concerns?
- · Identify new weed problems when they are small
 - New invasive species, resistant biotypes, etc.
 - Can use more intensive control strategies on the pockets that need it rather than field-wide

Spatial sampling

- Wide range of sampling intensities
 - Map illustrates a fairly intense grid sampling strategy
 - · Probably a bit excessive in terms of precision needed
 - Could be a "drive by" observation from the truck or "ask the irrigator"
 - Probably a bit lax
- Take a walk or ride through each zone a few times each season
 - "zone" size may vary among operations due to scale
- Key points
 - Cross the top, middle, and bottom of the field to account for that variability
 - Don't follow traffic patterns
 - Hit known "different" areas (soils, swales, historical use)
 - Note weed differences in middles vs rows

Modified from Koller and Lanini 2005 (Calif Agric 59:182)

- Key points:
 - Monitoring should begin after harvest.
 - Recall the techniques used last year and consider how they worked. Adjust as needed.
 - Scout orchards to assess weed presence and size for fall treatments with PRE/POST tankmixes
 - In late winter, assess the efficacy of the dormant season weed control program. Decide on spring program needs.
 - In late spring, evaluate previous control efficacy and determine pre-harvest weed control program.
 - At harvest, note how well the yearly program worked.

Orchard weed scouting

- Get a good representation of the weeds throughout the orchard management zone
- Scout several times per year to catch multiple weed flushes at sizes that can be controlled
- · Choose the right tool for the job
 - Avoid economic and environmental problems with over- or under-treating
 - May need to consider rows and middles separately
- · Keep records and compare year-over-year
 - Identify new weed problems and weed control failures and address at early stages
- Use scouting results to reevaluate and refine your weed management program
 - Should be an iterative process and something to consider throughout the year

Brad Hanson

bhanson@ucdavis.edu 530 752 8115 http://ucanr.org/brad.hanson

UC Davis Weed Research and Information Center http://wric.ucdavis.edu/ http://ucanr.org/blogs/UCDWeedScience/ @UCWeedScience on Twitter

Jim Adaskaveg, UC Riverside

Disease Management Update and Optimum Fungicide Usage Based on Host Phenology and Disease Monitoring

Dr. J. E. Adaskaveg

Department of Plant Pathology University of California, Riverside

Foliar and fruit diseases of almond in California

Brown rot blossom blight

Green fruit rot/Jacket rot

Shot hole

Bacterial spot

Scab

Alternaria leaf spot

Rust

Fungicides for Managing Almond Diseases

Inorganics and Conventional Synthetics

New:

Luna Products & Merivon (2014), Syllit (2014), Viathon (2015), & new products continue to be evaluated

Why disease monitoring and risk assessment?

- Determine pathogen population size
- Determine possibility of disease outbreaks or increases in disease intensity based on general weather forecasts
- Assess if, when, and where disease management has to be implemented
- Optimize disease management effective and economical

Optimum timing for implementing management practices

Inoculum-based

- Inoculum (disease) levels in the current and previous seasons are indicators for risk.
- Inoculum may not be present at high levels and disease progress can be monitored.
- Once inoculum is found, management practices can be implemented.
- Examples: shot hole, scab, rust, bacterial spot

Host phenology-based

- Disease occurs on specific host tissues during a limited time in the season
- Inoculum is commonly present
- Examples: blossom blight, Rhizopus hull rot

Microclimate-based

- Pathogen inoculum is commonly present.
- Climatic conditions determine disease progress.
- Examples: Alternaria, anthracnose, bacterial spot

Examples of diseases where management is based primarily on amount of pathogen inoculum

Shot hole

Scab

Rust

Shot hole of almond - Disease cycle in California

Wilsonomyces carpophilus

Shot hole management program for almond

Monitor for sporodochia in the previous fall and in the spring of current season

Almond Rust Disease Cycle

Repeating stage: reinfection of new host tissue from secondary, tertiary, inoculum.

Driven by environmental conditions and host susceptibility.

Management of almond rust with properly timed fungicides

- Biweekly monitoring is needed in the spring.
- Start applications with first detections of rust on leaves (angular yellow flecks) at 1% incidence and continue prior to forecasted rains.
- The goal is to shift the disease progress curve by 8-12 weeks.
- Fall defoliation before epidemics reduces overwintering inoculum

Disease progress curves of rust without and with fungicide applications starting at first detection in the spring. With fungicide applications, the progress curve is shifted so that defoliation from disease occurs late in the season.

Management of almond rust with properly timed fungicides

• Start in-season treatments with multi-site material: mancozeb or chlorothalonil.

- Second and third applications: use single-site materials as premixtures: Qol (FRAC 11) SDHI (FRAC 7), and DMI (FRAC 3) compounds. Sulfur and chlorothalonil are also effective. Dormant treatments are ineffective.
- Azoxystrobin or propiconazole have post-infection activity (applied 1-2 days after rainfall) because they are locally systemic.

Disease cycle of almond scab and management strategies using dormant and after petal fall in-season treatments

Fusicladium carpophilum

Disease epidemiology determines most effective timings of fungicide applications.

Almond scab in California

- Scab has become a common disease at many locations in recent years and the disease has to be managed.
- Effective management requires
 - Knowledge of the disease history of the orchard
 - Application of dormant treatments to delay twig sporulation
 - Monitoring for twig sporulation in the spring
 - Fungicide application at the beginning of twig sporulation

Twig lesions non-sporulating (top) and sporulating (bottom)

Management of Scab:

Dormant applications to reduce inoculum in the spring

cv. Carmel, Butte Co.

Application: Jan 2014, Evaluation: April 23.

2014

- Chlorothalonil-oil is highly effective in delaying sporulation of twig lesions into late spring – copper-oil less effective, captan-oil or mancozeb-oil have little efficacy.
- Chlorothalonil is effective by itself, but oil increases effectiveness.

Applications in mid-Dec. similarly effective as in mid-Jan.

Dormant treatments to reduce scab inoculum in the spring

- Bravo WeatherStik received a Section 2(ee) registration for dormant application between Dec. 1 and Jan. 10, or before bud swell using the 4pt rate.
- Full registration planned through IR-4 to change PHI to 60 days and rate to 6 pts/A.
- Benefits: Inoculum reduction, delay onset of epidemic, and synchronize scab with Alternaria treatments

			Bloom			Spring		Summer	
			Pink	Full	Petal	Two	Five		
	Disease	Dormant	bud	bloom	fall	week	week	May	June
Treatment	Scab	++	_	-	+	+++	+++	+/-	+/-
scab and Alternaria	Scab Dormant Chlorothalonil+oil	++	-	-	-	-	++++	+++	+/-
	Alternaria	-	-	-	-	-	+++	+++	+++
N									

Management of Scab - Summary

- At locations with high disease levels, a dormant application should be done.
- An effective 3-spray program includes dormant and two applications after twig infection sporulation.
- Multi-site fungicides with low resistance potential (chlorothalonil, possibly mancozeb, captan, ziram) should be in rotations with the newer single-site and pre-mix fungicides.

Most effective newer fungicides:

Single: Quash, Ph-D, Syllit, EXP-1 **Pre-mixtures**: Quadris Top, Inspire Super, Luna Sensation, Merivon **Rotations**: including Catamaran/Viathon.

Examples of diseases where management is based primarily on host phenology

Brown rot blossom blight

Brown rot blossom blight

- Infection period is well defined bloom period of 7 to 14 days for each variety in an orchard
- Risk of infection is determined by environmental conditions
 - Temperatures above 58F
 - Wetness
- Multiple highly effective fungicides are available

Timing of	Determining factors	Delayed bloom application (30-40% bloom)	PB (5% bloom) <u>and</u> FB (80% bloom) applications	
applications	Environmental conditions (rain)	Less favorable	Highly favorable	
	Fungicide properties	Locally systemic action	With or without locally systemic action	

- Many of the newer brown rot fungicides have some locally systemic activity and subsequently pre- and some post-infection activity.
- During less favorable environments a single application at delayed bloom (20-40% bloom) is sufficient for good disease control.
- During highly favorable conditions, a 2-spray program with applications at pink bud and full bloom is recommended.

Almond Hull Rot

- Caused by Rhizopus stolonifer or by Monilinia fructicola
- Both pathogens infect fruit and cause dieback

R. stolonifer (left), *M. fructicola* (right)

- Inoculum of Rhizopus stolonifer is omnipresent (soil)
- Inoculum of *Monilinia fructicola* originates from other stone fruits (peaches, cherries) or almond. Blossom blight can be caused by *M. laxa* (North) and *M. fructicola* (South regions).
- The two pathogens require different management strategies

Effective hull rot treatments are available

Numerous effective treatments available: FG 3, 7, 19, 3/7, 3/11, 7/11. Reduction of disease up to 70%. cv. Nonpareil, San Joaquin Co. 2014, Hull rot mainly caused by *R. stolonifer*

Timing of hull rot treatments

Hull Rot caused mainly by *M. fructicola* 2012 trial

6-6 7-13

@

0

@

@

4-4 4-25

@

@

Precip. 9.5 mm

@

@

Hull Rot caused mainly by *R. stolonifer* 2014 trial

Pathogen = *M. fructicola*: Pre-hull split applications (early/mid June)
Pathogen = *R. stolonifer:* Early to late hull split applications but earlier applications at pre-hull split also help to manage the disease.
Both pathogens: Applications in early/mid June <u>and</u> at early hull split.

Examples of diseases where management is based primarily on environmental conditions

Alternaria leaf spot

Alternaria alternata, A. arborescens, A. tenuissima

Anthracnose

Colletotrichum acutatum

Bacterial spot

Xanthomonas arboricola pv. pruni

Timing of Alternaria leaf spot treatments

- Inoculum is omnipresent in orchards.
- Alternaria leaf spot is greatly influenced by microclimatic conditions within orchards.
- The DSV (Disease Severity Value) Model was originally developed for forecasting black mold of tomato caused by *A. alternata*.
- We evaluated the model for forecasting the disease on almond and adapted the temperature parameters.

The modified DSV model

Mean temperature (C) during wetness	Leaf wetness duration (hours)							
15 - 17	0 - 6	7 - 15	16 - 20	21				
17.1 - 20	0 - 3	4 - 8	9 - 15	16 - 22	23+			
20.1 - 25	0 - 2	3 - 5	6 - 12	13 - 20	21+			
25.1 - 29	0 - 3	4 - 8	9 - 15	16 - 20	23+			
DSV	0	1	2	3	4			

Efficacy of Alternaria leaf spot treatments - 2014

	Rate					
Treatment	(oz/fl oz)	5/14	6/4	6/25	Dis. Inc. (%)	Sev. rating
Control					а	a
Isofetamid	17	@	@	@	b	b
EXP-1	5.14	@	@	@	cd	c
EXP-1 + Headline	3.43 + 5.48	@	@	@	b	bc
EXP-1 + EXP-2	3.43 + 4.57	@	@	@	d	c
Isofetamid + IB18111	10.3 + 5.57	@	@	@	bc	bc
Ph-D + Tebucon	6.2 + 8	@	@	@	b	b
Fontelis + Tebucon	14 + 8	@	@	@	c	bc
Luna Experience	6	@	@	@	bc	bc
Luna Sensation	5	@	@	@	b	bc
Merivon	6.5	@	@	@	cd	c
Inspire Super*	20	@		@	cd	c
Quadris Top*	14		@			
Bravo Weather-Stick	64	@			b	b
Quadris Top*	14 + 16		@	@		
Ph-D*	6	@		@	bc	bc
Tebucon	8		@			

Summary

- Two to three applications in late spring based on a DSV-model threshold (e.g., increases of 6-10 values of the 7-day index).
- Most effective materials: FRAC 7/11 combinations; FRAC 3+7, 3/9, 3/11, and 3+19 combinations.
- Rotations and mixtures of FRAC Groups successful -No detections of new resistance

0 20 40 60 80 100 0 1 2 3 4

-Rotations

Bacterial Spot

The pathogen *Xanthomonas arboricola* pv. *pruni* overwinters in fruit mummies on the tree. Isolates evaluated to date were all copper-sensitive.

Late dormant treatments with copper, coppermancozeb, or copper-mancozeb-captan significantly reduced the disease.

In-season treatments in the weeks following petal fall were most effective when timed around rain events and before temperatures started to rise.

All copper products significantly reduced disease. Kasumin (accepted in IR-4), Fireline/Mycoshield, and Serenade Optiva were also effective.

The most effective management program:

- 1) A late dormant application to reduce inoculum;
- 2) At least one or two in-season applications around rainfall events and rising temperatures to prevent new infections.

(see poster for details)

Thank you Danke Gracias Merci Cheers 谢谢 ありがとう धन्यवाद спасибо شکر ا

Almond Conference

Dr. J. E. Adaskaveg

Department of Plant Pathology University of California, Riverside

Thank You

