

2018 THE ALMOND CONFERENCE

SPEED TALKS: ROOTSTOCKS AND VARIETIES

ROOM 312-313 | DECEMBER 6, 2018

AGENDA

- Sebastian Saa, Almond Board of California, moderator
- Almond Board Funded Researchers
 - Bruce Lampinen, UC Davis/ANR
 - Roger Duncan, UCCE Stanislaus
 - Devinder Sandhu (Jorge Ferreira), USDA-ARS US Salinity Lab
 - Georgia Drakakaki, UC Davis
 - Malli Aradhya & Daniel Kluepfel, USDA-ARS, UC Davis
 - Jonathan Fresnedo, Ohio State University
 - Mysore R. Sudarshana, USDA-ARS, UC Davis (Kurtis Dluge)

Field Evaluation of Almond Varieties and Selections

Bruce Lampinen¹, Luke Milliron², Dani Lightle² Roger Duncan², Phoebe Gordon⁴, Joe Connell⁵, Samuel Metcalf⁴, Loreto Contador⁴, Tran Nguyen⁴ Sabrina Marchand¹, and Tom Gradziel¹ ¹UC Davis Plant Sciences ²UCCE Butte/Glenn/Tehama Counties, ³UCCE Stanislaus County, UCCE ⁴Madera County, ⁵UCCE Butte County

The next generation almond variety trials were planted in the winter of 2014 in Butte County (Chico State University), Stanislaus County (Salida School District Site), and Madera County (Chowchilla grower site).

Objective- evaluate new varieties and selections compared to standard varieties in three different almond production areas in the Central Valley.

Site	Rootstock	Spacing	#trees/acre
Butte	Krymsk 86	18' x 22'	110
Stanislaus	Nemaguard	16' x 21'	130
Madera	Hansen 536	12' x 21'	173

Table 2. Varieties and selectionsplanted at the next generationregional almond variety trials. Items1-30 are planted at all 3 sites whileadditional material planted atindividual sites is listed at the end.

	Variety	Source
1	Eddie	Bright's
2	Capitola	Burchell
3	Supareil	Burchell
4	self-fruitful P16.013	Burchell
5	Self-fruitful P13.019	Burchell
6	Booth	Burchell
7	Sterling	Burchell
8	Bennett	Duarte
9	Nonpareil	Fowler
10	Durango	Fowler
11	Jenette	Fowler
12	Aldrich	Fowler
13	Marcona	Spain
14	Winters	UCD
15	Sweetheart	UCD
16	Kester (2-19e)*	UCD
17	UCD3-40	UCD
18	UCD18-20	UCD
19	UCD1-16	UCD
20	UCD8-160	UCD
21	UCD8-27	UCD
22	UCD1-271	UCD
23	UCD1-232	UCD
24	UCD7-159	UCD
25	UCD8-201	UCD
26	Y121-42-99	USDA
27	Y117-86-03	USDA
28	Y116-161-99**	USDA
29	Y117-91-03	USDA
30	Folsom	Wilson
31	Wood Colony on Krymsk 86 (Butte only)	
31	Lone Star on Hansen 536 (Chowchilla only	

There are 4 replications of each variety and selection at each site

*Kester (2-19e) was planted at all three sites on the usual rootstock f In addition at the Butte and Stanislaus sites it was also planted in t replicated trial on Hansen 536 rootstock

** Y116-161-99 planted only in two reps outside of main trial at Butte

Data collected

- Bloom timing
- Hullsplit timing
- Midday canopy PAR interception
- Yield
- Nut quality
- Harvestability
- Disease incidence
- Tree loss

2	010
2	STO.
Site	Midday PAR interception (%)
Butte	36-78
Stanislau s	15-75
Madera	37-96

Challenges- Butte

2016 Extensive rust damage 2017 **Bacterial blast** Extensive hull rot Gopher damage 2018 Significant frost damage during bloom Significant hull rot Minor bacterial blast Almond leaf scorch (UCD1-271 and P13.019) **Band canker** Spider mite infestation Low bee activity Low frame density of hives

Challenges- Stanislaus

Extensive verticillium wilt 2016 Glyphosonate drift during bloom Band canker 2017 Band canker (~100 Nonpareil trees lost) Also some on Y121-42-99, Sterling and Kester/Hansen 536 2018 Significant hull rot

Y121-42-99, Sterling, Y116-161-99, Kester/Hansen, Nonpareil Scab Band canker

Challenges- Madera

2016-2017

Shaker damage (a few Nonpareil and Wood colony)

Shot-hole like symptoms

Cankers (all Y-121-42-99 in one block, some Jenette)

Dead trees due to infiltration issues in blocks 3 and 4)

2018

Significant frost damage on 3 dates during bloom

Significant hull rot

Problem with many varieties accidentally shaken earlier than desired

2017 Bloom

	Varieties with defect	Butte	(%)	Stanislaus	(%)	Madera	(%)
2017 defects	6% or more double kernels	UCD 18-20	41	UCD 18-20	22	UCD 8-201	36
		Self-fru P16.013	37	UCD 8-201	18	Booth	22
		Booth	30	Booth	16	UCD 18-20	20
		UCD 8-201	26	Y121-42-99	16	UCD 8-27	18
		Wood Colony	24	Self-fru P16.013	15	Self-fru P16.013	13
Doubles		UCD 8-27	21	UCD 8-27	15	UCD 1-16	8
Doubles		UCD 8-160	20	Self-fru P16.013	14	Durango	7
		UCD 1-232	19	UCD 1-16	11	UCD 1-232	7
		Self-fru p13.019	19	Jenette	8		
		UCD 1-16	18	Durango	7		
		Jenette	14	Y117-91-03	6		
		Durango	13				
		Aldrich	9				
		Winters	9				
		Folsom	8				
		Kester	7				
		Bennett	7				
	6% or more twin kernels	UCD 8-27	18	UCD 3-40	14	UCD 3-40	28
Twins	(two kernels within the	UCD 3-40	12	UCD 8-27	11	Jenette	9
	same pellicle)	Sweetheart	10	Jenette	9	UCD 8-27	8
	• •	Nonpareil	9	UCD 8-201	8	UCD 8-201	7
		UCD 1-232	7	UCD 8-160	7	2-19E	7
		UCD 8-160	7	Self-fru P16.013	7	UCD 7-159	6
		Booth	6				
		Jenette	6				
		UCD 8-201	6				
	6% or more havel orange worm damage		6	LICD 8-27	8	LICD 1-271	14
NOW		00002/	Ũ	00002/	Ũ	UCD 8-27	11
						UCD 8-201	8
						Supareil	7
						Bennett	, 7
						UCD 3-40	7
Dlaste	Cov an analysis have been also	Calf fm: D1C 012	10	(2222)		(2222)	
Bianks	6% or more blank kernels	Sell-Iru P10.013	10	(none)		(none)	
			14				
		121-42-99	12				
		UCD 18-20	9				
		Jenette	б				
	6% or more severe shrivel	Folsom	21	Jenette	10	Folsom	10
Severe shrive	1	Y117-86-03	17	UCD 8-201	8	Jenette	9
		Eddie	16	Y117-86-03	6	UCD 8-201	8
		Self-fru P16.013	14			Self-fru P13.01	7

PAR interception versus yield

Cumulative 2016-2017 yields

Butte

Stanislaus

#rops Variety or selection	Yield (kernel											_# re	eps	Variety or selection	Yie on I	ld (kernel lbs/ac)									
A Booth	2778 2													4 UCD8-160		2282	а								
4 UCD18-20	2650 a	h												4 Self-fruitful P13.019	9	2243	а	b							
4 UCD1-232	2630 a 2581 a	b c												4 UCD18-20		2233	а	b							
108 Nonpareil	2579 a	b c												3 Kester (2-19e)		2127	а	b (С						
4 Winters	2509 a	b c	b											4 Y117-91-03		2096	а	b (с	d					
4 UCD8-160	2379 a	b c	d	۵										4 Aldrich		1837	а	b (с	d e	9				
4 Folsom	2075 a	b c	d	6	f									3 Kester (2-19e) /Ha	nsen	1809	а	b	с	d e	9				
4 Y117-91-03	1981	b c	d	ē	f									4 Bennett		1808	а	b	с	d e	9				
4 Capitola	1955	bc	d	ē	f									4 Y121-42-99		1785	а	b	с	d e	9				
4 UCD8-201	1922		d	2	f	h								4 Y116-161-99		1763	а	b	с	d e	2				
4 Self-fruitful P13 019	1881	c	d	6	f	h								4 Y117-86-03		1749	a	b	c	de	e f	F			
4 Wood Colony	1801	0	d	ē	f	h	i							4 Winters		1739	а	b	с	d e	e f	F			
4 Jenette	1795		d	6	f	h	i							4 UCD8-201		1692	а	b	с	d e	e f	F a			
4 Kester (2-19e)	1763		u	6	f	h	i							4 Booth		1678	-	b	c	de	s f	F a	h		
4 Kester (2-19e) /Hansen	1669			ē	f	h	i							3 Durango		1633		~	r	d	s f	E a	h	i	
4 Durango	1662			2	f	h	÷							4 UCD1-232		1629			c c	d	, i	я Fa	h	÷	
4 UCD8-27	1612			c	f	h	÷		M	adera	ר			4 666 1-252 4 Eddia		1595			с с	d	, 1 , 1	- 94 F - 07		-	
4 Eddie	1537				f	h	i	i		uuci				4 Nonparoil		1533		_	c c	d		E a	h	-	٦
4 Eddie	1557							1		Yield				4 Nonparen		1301			L	u e	; 1	i y			
										(kernel															
			_	# re	os V	ariet	ty or s	selectio	n	lbs/ac)															
					3 Y	-116-	-161-	99		4/82	а.														
					48	ooth				4103	a b														
					4 C	apito	ola			3971	a b	с.													
					40	CD-1	18-20	040		3905	a b	c d													
					4 S	elt-tr	-P16-	013		3842	a b	c d													
					4 Y	-11/-	-86-0	3		3801	a b	са													
					4 H	enne	-11			3/4/	a n	<u> </u>	<u>`</u>												
					83 N	onpa	areil			3641	b	c a e	• 1												
					4 K		01.0	2		3023	D	0 0 0	; 1												
					4 Y	-11/- /intc:	-91-0	5		3409	D L		; I	y a											
					4 V 4 F	ddie	15			3435	D h	c d e	ן ד הל	y a											

3427

3290

3242

3137

3116

3023

4 Jenette

4 Durango

4 UCD-1-16

4 Self-fr-P13-019

4 Aldrich

1 Y-121-42-99

d е

е

e f

bcdefghi

e f q

a

g

a

g h

h

b c

b c d е

b c d

b c d

bcd

Data to be collected in 2019

- Bloom timing
- Hullsplit timing
- Midday canopy PAR interception
- Yield
- Nut quality
- Harvestability
- Disease incidence
- Tree loss
- Tree structure rating

Thanks to the Almond Board of California for supporting this work

Questions?

For more information see Poster #69

Thank you!

Exploring Alternative Rootstocks in Butte County

Joseph Connell, UCCE Advisor Emeritus & Luke Milliron, Farm Advisor, Butte Co., German Campos, Deseret Farms of California-Durham, and Fowler Nursery

Objective

- To compare field performance of 'Nonpareil' on six rootstocks
- Orchard planted
 March 2010, 24'x16'
 on Farwell Loam Soil

'Lovell'
'Krymsk 86'
'Atlas'
'Empyrean 1'
'Nickels'
'Rootpac-R'

Hullsplit observations

- Nuts on 'Rootpac-R' rooted trees matured rapidly reaching 100% hullsplit first followed by 'Lovell'.
- 'Krymsk 86' is intermediate and slow to mature.
- The most vigorous rootstocks, 'Empyrean 1', and 'Nickels' take longest to complete hullsplit.

•								
		Hullsplit I	Hullsplit Percentage					
	Rootstock	Date at 1%*	Date at 100%	for Hullsplit				
	'Lovell'	7/25	8/5	12				
	'Krymsk 86'	7/27	8/12	17				
	'Atlas'	7/26	8/8	14				
	'Empyrean 1'	7/27	8/15	20				
	'Nickels'	7/27	8/16	21				
	'Rootpac-R'	7/24	8/3	11				

Dates in 2018 when 'Nonpareil' reached 1% and 100% Hullsplit.

* Dates based on a 3 replicate average with interpolation between observations. Block was commercially shaken on 8/20/2018 with pickup on 8/31/2018.

Pre-Harvest 'Nonpareil' SWP								
measured August 24	measured August 24, 2018 in Durham, CA							
Rootstock	Mean SWP in bars*							
'Lovell'	- 22.4 a							
'Krymsk 86'	-17.1 b							
'Atlas'	-17.5 b							
'Empyrean 1'	- 20.1 ab							
'Nickels'	- 18.1 ab							
'Rootpac-R'	- 22.1 a							

Pre-harvest Stem Water Potential

- Trees on 'Krymsk 86' and 'Atlas', had the least stress.
- The largest, most vigorous trees, 'Empyrean 1' and 'Nickels' were intermediate in stress.
- *Rootpac-R' rooted trees are smaller, weaker, and among the most stressed as are trees on 'Lovell'.

Rootstock	N (%)	K (%)	B (ppm)	Ca (%)	Mg (%)	Zn* (ppm)	Mn (ppm)	CI (%)	Na (ppm)
'Lovell'	2.60 bc	2.03 bc	35.6 b	3.56 c	1.41 a	51.9	20.7 b	0.09 a	293.0
'Krymsk 86'	2.79 a	2.34 a	38.8 a	3.61 c	1.10 c	53.0	21.5 b	0.07 b	192.8
'Atlas'	2.65 b	2.46 a	41.1 a	3.62 c	1.21 b	58.7	21.4 b	0.04 d	316.4
'Empyrean 1'	2.47 d	1.92 c	40.1 a	4.08 b	1.49 a	65.4	27.3 a	0.03 e	250.6
'Nickels'	2.47 d	2.26 ab	39.7 a	4.68 a	1.20 b	63.9	20.9 b	0.03 e	260.0
'Rootpac-R'	2.58 c	2.47 a	35.6 b	3.73 c	1.09 c	54.9 ns	30.8 a	0.05 C	219.8 ns

Nutrient analysis of 'Nonpareil' leaf tissue collected in Durham, California July 8, 2018.

Values followed by the same letters are not significantly different from one another at P< 0.05 as measured by Fisher's least significant difference (LSD).

* Zinc levels are high likely due to leaf surface contamination.

Rootstock effects on Leaf nutrient levels

- 'Krymsk 86' rooted trees had the highest level of leaf nitrogen
- 'Nickels' rooted trees are highest in calcium and among the lowest in N and Na
- Trees on 'Lovell' are intermediate in nitrogen and potassium but the highest in chloride
- Come study our poster for the full story!

Field Evaluation of Rootstocks for the Westside of the San Joaquin Valley

- Roger Duncan, UC Cooperative Extension, Stanislaus County
- Brent Holtz, UC Cooperative Extension, San Joaquin County
- In cooperation with Lee Del Don, Westley CA

- Zacharias clay loam soil
- Soil and irrigation water alkaline, moderately high in Cl and/or boron, depending on year / water source
- Following decades of row crops (tomatoes & melons)

List of Rootstocks. Planted Dec. 2012

Lovell	P. persica
Nemaguard	P. persica
Empyrean 1 (a.k.a. Barrier 1)	P. persica x P. davidiana
Avimag (a.k.a. Cadaman)	P. persica x P. davidiana
HBOK 50	Harrow blood x Okinawa peach
Hansen	P. dulcis x P. persica
Brights 5	P. dulcis x P. persica
BB 106	P. dulcis x P. persica
Paramount (a.k.a. GF 677)	P. dulcis x P. persica
Flordaguard x Alnem a.k.a. Y119-109-98.	P. persica x Israeli bitter almond
PAC9908-02	(P. dulcis x P. persica) x P. persica
Hansen x Monegro (HM2)	(P. dulcis x P. persica) x (P. dulcis x P. persica)
Viking	P. Persica x (P. dulcis)x [(P. cerasifera x P. armeniaca)]
Atlas	P. Persica x (P. dulcis)x [(P. cerasifera x P. armeniaca)]
Krymsk 86	P. cerasifera x P. persica
Rootpac R	P. cerasifera x P. dulcis

Rootstock Effect on Chloride Accumulation in Leaf Tissue

CI critical level = 0.3%

		% CI	
Krymsk 86	0.89	a*	*P <u><</u> 0.05
Lovell	0.72	b	
Nemaguard	0.57	С	
PAC9908-02	0.45	d	
Atlas	0.42	de	
Cadaman	0.38	def	
Empyrean 1	0.33	ef	
HBOK 50	0.31	ef	
Viking	0.30	f	
FxA	0.19	g	
BB 106	0.19	g	
Brights 5	0.18	g	
GF 677	0.18	g	
Rootpac R	0.17	g	
HM2	0.16	g	
Hansen	0.15	g	Unive

Rootstock Effect on Boron Accumulation in Hull Tissue

B critical level = 300 ppm

	В	(ppm)	
Lovell	180 a	۱*	*P <u><</u> 0.05
Cadaman	170 a	b	
Atlas	158 a	ab	
HBOK 50	158 a	b	
Nemaguard	153 b	C	
Krymsk 86	152	bc	
Empyrean 1	133	cd	
Rootpac R	132	cd	
Hansen	126	de	
GF 677	120	de	
HM2	116	de	
Viking	109	е	
PAC9908-02	108	е	
Brights 5	106	е	
FxA	104	е	
BB 106	102	е	Unive

		Average Trunk Lean (degrees)	% of Trees > 15º Lean
	Krymsk 86	6.4 a	3.3
	Hansen	7.4 a	20.0
	Flordaguard x Alnem	8.1 a	10.0
	Rootpac R	9.8 a	23.3
	Viking	10.2 a	6.7
	BB106	10.8 ab	26.7
	Nemaguard	11.0 ab	17.2
	GF 677	11.0 ab	37.9
	PAC 9908-02	11.1 ab	26.7
	Lovell	11.9 abc	33.3
	Brights 5	12.1 abc	20.0
	Atlas	12.1 abc	24.1
	HBOK 50	16.3 bcd	53.3
0.05	Empyrean 1	17.0 cd	60.0
	Hansen x Monegro	21.1 d	70.0

*P <u><</u>

Rootstock Effect on Tree Size, Yield & Yield Efficiency

34

	Circumferenc e	2018 Yield	(4 th – 7 th)	Efficiency
Flordaguard x Alnem	66.0 a	3965 a	12,276	35.5
BB 106	62.1 b	3875 ab	12,203	39.9
Brights 5	54.6 de	3701 abc	11,564	48.8
Empyrean 1	63.2 b	3487 abcd	11,461	36.2
HM2	63.4 b	3572 abc	11,361	35.6
Hansen	62.8 b	3665 abc	11,355	36.3
PAC9908-02	63.3 b	3362 bcd	10,916	34.3
Rootpac R	62.0 b	3476 abcd	10,587	34.7
Atlas	54.5 de	3457 abcd	10,506	44.5
Viking	54.3 de	3085 cd	9,704	41.5
Paramount (GF 677)	55.4 cd	3194 cde	9,579	39.3
HBOK 50	57.5 c	3060 de	9,201	35.1
Krymsk 86	51.4 f	3004 de	8,866	42.2
Nemaguard	55.3 cd	2802 e	8,833	36.3
		0750	0.040	00 F

Seventh Year Evaluation of 13 Almond Rootstocks in a Sandy Location With Nematodes

David Doll, UCCE Merced

Arnold Farms, Atwater, CA

Cameron Zuber, UCCE Merced

Merced County Rootstock Trial

Background:

- Planted in January 2011,
- Spacing 22' x 18'
- 13 rootstocks tested on 'Nonpareil.'
- 7 rootstocks tested on varieties 'Monterrey,' and 'Fritz.'

Challenges:

- Sandy soil near Atwater, CA,
- low cation exchange capacity,
- Irrigated with groundwater with high nitrates and moderate sodium

<pre>'Nonpareil,' 'Monterey,' and 'Fritz'</pre>	'Nonpareil' only	
Atlas	BB106	
BH5	Cadaman*	
Empyrean-1	Cornerstone*	
Hansen 536	Floridaguard x Alnem	
Nemaguard	Krymsk-86	
Viking	University of California Agriculture and Natural Resource	
Rootknot Nematode (Meloidogyne sp.)

- Causes severe stunting and loss of productivity;
- Krymsk-86 is
 susceptible and should
 not be planted in
 Rootknot infested soils;
- FxA, could be due to weed populations;

	Root knot nematodes per 500 grams of soil						
Rootstock	2011	2012	2013	2014	2015	2016	2017
Atlas	0	0	0	0	0	0	0
BB106	0	0	0	0	0	0	0
BH5	0	0	0	0	0	0	0
Cadaman	0	0	0	0	0	0	0
Cornerstone	0	0	0	0	0	0	0
Empyrean-1	0	0	0	0	0	0	0
Floridaguard x Alnem	0	0	0	0	0	0	15
Hansen 536	0	0	0	0	0	0	0
Krymsk-86	0	0	1	131	88	13	312
Nemaguard	0	0	0	0	0	0	0
RootpacR	0	0	0	0	0	0	0
TemproPac	0	0	0	0	0	0	0
Viking	0	0	0	0	0	0	0

Root Lesion Nematode (*Pratylenchus vulnus*)

		Lesion nematodes per 500 grams of soil						
Causes stunting of almond trees,	Rootstock	2011	2012	2013	2014	2015	2016	2017
	Atlas	0	0	0	0	0	0	16
	BB106	0	0	0	0	0	12	0
especially when in	BH5	0	0	0	38	6	46	0
the presence of	Cadaman	0	0	0	0	0	0	0
Ring	Cornerstone	0	311	31	0	2	13	51
	Empyrean-1	0	0	0	0	0	0	29
Most rootstocks are susceptible in the	Floridaguard x Alnem	0	0	0	0	0	0	0
trial	Hansen 536	0	0	0	0	131	34	0
unai	Krymsk-86	0	0	33	547	160	0	47
N 1 1 1	Nemaguard	0	0	0	0	0	0	0
Numbers are low due to extraction	RootpacR	0	0	0	9	33	2	25
	TemproPac	0	0	0	34	26	0	0
method.	Viking	0	0	0	0	41	55	26

Ring Nematode (Mesocriconema xenoplax)

- Predisposing factor of bacterial canker
- Peach almond hybrids are highly susceptible;
- All rootstocks in the trial are susceptible

	Ring nematodes per 500 grams of soil ¹						
Rootstock	2011	2012	2013	2014	2015	2016	2017
Atlas	0	0	0	0	75	418	290
BB106	0	0	0	46	1	122	978
BH5	0	0	0	123	282	934	824
Cadaman	0	0	0	1	624	510	702
Cornerstone	0	0	0	0	150	610	861
Empyrean-1	0	0	0	0	229	91	630
Floridaguard x Alnem	0	0	0	12	656	774	2506
Hansen 536	0	0	1	1832	1066	470	1367
Krymsk-86	0	0	8	247	319	730	926
Nemaguard	0	0	0	0	8	230	265
RootpacR	0	0	0	0	530	1586	909
TemproPac	0	0	0	0	86	188	811
Viking	0	0	0	0	6	11	923

Percent of nuts with split hulls from mid-July ۲ though beginning of August

Initial hull split

Complete dry stage

Almonds considered split include above ۲ stages

Destates	Percent of nuts with split hulls (%)							
ROOISLOCK	7/13/2018	018 7/17/2018 7/21/201		8/3/2018				
Atlas	0	5	23	93				
BB106	0	0	0	68				
BH5	0	2	22	70				
Cadaman	0	2	5	70				
Cornerstone	0	7	30	87				
Empyrean-1	0	0	3	78				
Floridaguard x Alnem	0	17	10	62				
Hansen 536	0	0	3	60				
Krymsk-86	0	23	63	100				
Nemaguard	2	12	17	75				
RootpacR	12	35	72	100				
TemproPac	0	5	12	55				
Viking	0	3	20	80				

Rootstock effects on anchorage.

 Rootstocks crossed with cherry plum (*P. cerasifera*) appear to be more upright (RootPacR, Krymsk-86 and Viking).

Rootstock	Average Trunk Angle (°)		
RootPacR	82.7		
Krymsk-86	82.1		
Viking	81.0		
Empyrean-1	79.7		
Hansen 536	78.9		
BH5	78.8		
Floridaguard x Alnem	78.7		
Nemaguard	78.1		
Atlas	76.7		
Cornerstone	76.7		
TemproPac	75.9		
BB106	75.7		
Cadaman	75.7		
Univ	versity of California		

Rootstock Trial at CSU Fresno

Gurreet Brar California State University, Fresno

- Planted March 2017, 21' X 14'
- Plot has 3 different soil types
- Experiment blocked by 3 EC zones
- Hanford Sandy Loam
- Tajunga Loamy Sand

ovel

- Hanford Fine Sandy Loam
 - 7 rootstocks/2 scion cultivars

Jordan College of Agricultural Sciences and Technology

- Compare performance of conventional peach rootstocks with peach almond hybrid and dwarfing rootstocks
- Other than growth and yield performance evaluation, water use efficiency and photosynthetic parameters for these rootstocks are also being studied

Jordan College of Agricultural Sciences and Technology

TRUNK GIRTH, SPRING 2018

FRESN@STATE

Jordan College of Agricultural Sciences and Technology

- Lovell accumulated most B in leaves of NP while Rootpac-20 had highest leaf B levels in Monterey
- Rootpac-R and Rootpac-20 had highest leaf N and K levels in both scion cultivars

Effects of Rootstocks on Marginal, High Boron Soil

Katherine Jarvis-Shean, UCCE Sac-Solano-Yolo;

Lampinen Lab, UC Davis;

Carolyn DeBuse, USDA

Boron Rootstock Trial – Rootpac R & Lovell tend for lower yields

Boron Rootstock Trial – Low Yields likely due in part to frost damage across the board

Woodland (10 miles east of site) 7-11 days after bloom

Boron Rootstock Trial – Titan, Nickels & FxA cumulatively highest yield

Boron Rootstock Trial – In 2018, No correlation between Hull B & Yield.

Thank you for your Attention

See you at the posters 3:00 - 5:00

Roger Duncan 209-525-6800

raduncan@ucdavis.edu

Linking Performance of Almond Rootstocks to Underlying Physiological and Genetic Determinants of Salinity Tolerance

> Devinder Sandhu, Research Geneticist Amita Kaundal, Assistant Project Scientist Jorge Ferreira, Plant Physiologist Donald L. Suarez, Soil Scientist

USDA US Salinity Laboratory Riverside, CA

Experimental set up:

- Experiment was set up in a randomized complete block design
- Non-grafted plants of 16 different rootstocks
- 3 replications x 3 plants per replication (one plant per pot)
- 5 treatments of water (irrigation water composition) with total 720 trees.
- 15 blocks, each containing combinations of genotypes and replications were created.

Salt treatments:

- <u>Treatment 1 (Control)</u>: Non saline control {Na⁺ 1.65 meq L⁻¹, K⁺ 6.5 meq L⁻¹, PO₄³⁻ 1.5 meq L⁻¹, Mg²⁺ 1.3 meq L⁻¹, SO₄²⁻ 1.5 meq L⁻¹, Cl⁻ 1.5 meq L⁻¹, NO₃⁻ 5 meq L⁻¹ and micronutrients}
- <u>Treatment 2 (Na-SO₄)</u>: mixed cations (Ca²⁺ = 1.25Mg²⁺ = .25 Na⁺) with predominantly sulfate (Cl⁻ = 0.2 SO²⁻₄) {Na⁺ 18 meq L⁻¹, Ca²⁺ 4.5 meq L⁻¹, K⁺ 6.5 meq L⁻¹, PO₄³⁻ 1.5 meq L⁻¹, Mg²⁺ 3.6 meq L⁻¹, SO₄²⁻ 22 meq L⁻¹, Cl⁻ 4.4 meq L⁻¹, NO₃⁻ 5 meq L⁻¹ and micronutrients}
- <u>Treatment 3 (Na-Cl)</u>: mixed cations (Ca²⁺ = 1.25Mg²⁺ = .25 Na⁺) with predominantly chloride (SO²⁻₄ = 0.2 Cl⁻) {Na⁺ 15.5 meq L⁻¹, Ca²⁺ 3.8 meq L⁻¹, K⁺ 6.5 meq L⁻¹, PO₄³⁻ 1.5 meq L⁻¹, Mg²⁺ 3.1 meq L⁻¹, SO₄²⁻ 3.8 meq L⁻¹, Cl⁻ 19 meq L⁻¹, NO₃⁻ 5 meq L⁻¹ and micronutrients}
- <u>Treatment 4 (Na-CI-SO₄)</u>: mixed anions SO₄-CI (SO²⁻₄=CI⁻), predominantly Sodium (Ca²⁺ = 1.25Mg²⁺ = .25 Na⁺) {Na⁺ 17 meq L⁻¹, Ca²⁺ 4.25 meq L⁻¹, K⁺ 6.5 meq L⁻¹, PO₄³⁻ 1.5 meq L⁻¹, Mg²⁺ 3.4 meq L⁻¹, SO₄²⁻ 12.32 meq L⁻¹, Cl⁻ 12.32 meq L⁻¹, NO₃⁻ 5 meq L⁻¹ and micronutrients}
- <u>Treatment 5 (Ca-Mg-CI-SO₄)</u>: mixed anions SO²⁻₄-Cl⁻ (SO²⁻₄=Cl⁻), predominantly Ca²⁺ and Mg²⁺.
 (Ca²⁺ = 1.25 Mg²⁺ = 5 Na⁺) {Na⁺ 2.75 meq L⁻¹, Ca²⁺ 13.5 meq L⁻¹, K⁺ 6.5 meq L⁻¹, PO₄³⁻ 1.5 meq L⁻¹, Mg²⁺ 10.8 meq L⁻¹, SO₄²⁻ 13.5 meq L⁻¹, Cl⁻ 13.5 meq L⁻¹, NO₃⁻ 5 meq L⁻¹ and micronutrients}

Survival rate under salinity treatment

Screening 16 almond rootstocks in Na-CI based treatment

Rootpac 40

Percent change in trunk diameter in different salt treatments

Physiological measurements in almond rootstocks under different salt treatments

Photosynthesis

Tissue Na concentration in 16 rootstocks under different salt treatments

Tissue CI concentration in 16 rootstocks under different salt treatments

Expression analysis of salt related genes in almond leaves and roots

Expression analysis of *HKT1* and *SLAH3* in Nemaguard (salt-sensitive) and Rootpac 40 (salt-tolerant) rootstocks

Conclusions

- There was maximum reduction in trunk diameter when irrigation water was high in Na and CI suggesting that mostly Na and to a lesser extent CI concentrations in irrigation water are the most critical ion toxicities for almond rootstocks
- Photosynthesis showed the highest correlation with change in trunk diameter followed by correlations with stomatal conductance and chlorophyll content.
- NHX1, SOS3 and AKT1 were highly upregulated in salinity treatments in leaves and HKT1 and AKT1 showed the highest upregulation (expression) in salinity treatments in roots

Experiments in progress

- Fifteen almond rootstocks are being evaluated at three salinity levels (EC =1.4, 2.5 and 3 dS m⁻¹).
- RNA-seq analyses of a salt-sensitive (Nemaguard) and a salt-tolerant (Rootpac 40) rootstock under control and salinity treatment to study global changes in gene expression.
- Functional complementation of the Almond HKT1 (*PpHKT1*) and (*PpSOS2*) genes in the Arabidopsis *hkt1* mutant

Acknowledgements

- Almond Board of California
- Dr. Manju Pudussery
- Dr. Amita Kaundal
- Dr. Xuan Liu
- Pangki Xiong
- Student research associates Noah, Paul, Andrew, Marco, Christina, Brianna, Vanessa, Thomas, Ajay, David, Katy
- Robert Curtis, Sebastian Saa and Debye Hunter

Nurseries: Agromillora, Burchell, Dave Wilson, Fowler, Sierra Gold

Subcellular Characterization of Salinity Tolerance in Almonds

Georgia Drakakaki

Department of Plant Sciences, University of California, Davis

gdrakakaki@ucdavis.edu

Questions in my Research Group:

How plant cells respond to biotic and abiotic stress?

Motivation

Almond plants are relatively sensitive to salinity stress

Need a comprehensive understanding of salinity tolerance

Salt resistant crop plants

Stuart J Roy, Sónia Negrão, Mark Tester

How different rootstocks respond to salinity?

- What happens under different environments?
- Where is sodium localized?

Rootstocks currently being characterized : **Empyrean-1 Controller-5** Hansen Krymsk 86 Titan Viking Nemaguard **Bright's hybrid**

Phenotypic characterization of rootstocks

Phenotypic characterization of rootstocks

Krymsk 86

Nemaguard

0 mM NaCl

Sodium localization in Controller-5 under salinity treatment

Sodium localization in Bright's –Hybrid under salinity treatment

Sodium localization in Nemaguard under salinity treatment

Sodium localization in Krymsk 86 under salinity treatment

Sodium localization in Titan under salinity treatment

Sodium localization in Empyrean-1 under salinity treatment

Summary

Unique subcellular distribution patterns of sodium were
observed in the evaluated rootstocks

Nemaguard, Controller-5 and Bright's Hybrid show enhanced sodium staining

• The results suggest that an exclusion mechanism of sodium transport takes place in Empyrean-1

- Titan, and Krymsk-86 show patterns distinct from Nemaguard
- Validation experiments are in progress to better understand mechanisms of sodium uptake and sequestration

Acknowledgements

Thank you

Oliver Betz, Shahab Madahhosseini, Fiona Dale-Huang, Yukun Cheng Thomas Wilkop Judy Jernstedt

Collaborators: Chuck Fleck

UCDAVIS DEPARTMENT OF **PLANT SCIENCES** College of Agricultural and Environmental Sciences

Integrated Conventional and Genomic Approaches to Almond Rootstock Development

Malli Aradhya, Craig Ledbetter, Dan Kluepfel and Greg Browne, USDA-ARS Andreas Westphal, KARE, UC Riverside

Objectives

- Produce genetically diverse interspecific hybrids to enlarge diversity among hybrids.
- Disease testing of commercial and experimental rootstocks to produce high-quality disease phenotype data.
- Intensify high-density genotyping of rootstock breeding populations.
- Develop and use effective marker assisted selection strategies for rapid development of improved rootstocks.

Prunus hybrids (2018 spring)

Pistil Parent	Pollen Parent	Hybrid ID	No. of hybrids
P. cerasifera	P. fenzliana	CF	9
P. cerasifera	P. kuramica	СК	20
P. cerasifera	P. argentea	CA	21
P. cerasifera	P. arabica	CB	14
P. cerasifera	P. bucharica	CB	22
P. cerasifera	P. davidiana	CD	2
P. dulcis	P. mira	DM	1
P. dulcis	P. angustifolia	DA	1
P. dulcis	nemaguard	DN	1
P. dulcis	P. persica (FG)	DP	1
P. persica	P. tomentosa	PT	2
P. persica	P. tangutica	PG	2
P. persica	P. arabica	PA	14
Total			110

Embryo rescue and micropropagation

Embryo Rescue to Plants Ready for Evaluation 12-15 months

Crown Gall Evaluation

Root-knot Nematode Resistance Evaluation

Root-lesion Nematode Resistance Evaluation

89

californ

Phytophthora: Disease Severity Rating

Phytophthora: Percent Crown Length Rotted

california

Phytophthora: % Root Rotted

Phytophthora: Root Weight

Rootstock

Phytophthora: Total Plant Weight

Control P. cinnamomi P. niederhauserii

Species background of *Prunus* rootstocks tested for susceptibility to *Meloidogyne floridensis*

P. argentea (2x) P. davidiana P. fenzliana P. mira (2x)P. keramica (2x) P. kansuensis P. tomentosa P. salicina P. davidiana P. bucharica (2x)

<u>Almond</u>*Prunus* dulcis X

Contd.

Prunus cerasifera X P. mira

Hansen 536 Lovell Nemaguard

Myrobalan (P. domestica)

Acknowledgments

Chuck Fleck and Becky Dykes, Sierra Gold Nurseries Franklin Lewis, Grad Student, Plant Sciences, NCGR Tissue Culture Lab Dianne Velasco, Ph.D. Candidate, Genetics, UCD Emily Johnson, Grad Student, Plant Sciences, UCD Holly Forbes, Grad Student, Plant Pathology, UCD Ali Mcclean, CPGRU, USDA-ARS Carolyn DeBuse, Horticulturist, USDA Repository John Preece, Research Leader, USDA Repository Tom Gradziel, Plant Sciences, UCD

Funding

Almond Board of California

Gene prediction and genome functional annotation of 'Nonpareil'

Jonathan Fresnedo

The Ohio State University

Genome sequencing of 'Nonpareil'

The Ohio State University

• Partnership with Dovetail Genomics

In collaboration with

Prof. Thomas Gradziel (Tom) UC Davis

Dr. Mysore Sudarshana (Sudhi) USDA-UC Davis

'Nonpareil' genome

 Illumina sequencing + Chromosome conformation capture (Hi-C): using chromatin spatial organization in the cell

Sati, S. & Cavalli, G. Chromosoma (2017) 126: 33. https://doi.org/10.1007/s00412-016-0593-6

Ulianov et al. (2015) Int Rev Cell Mol Biol 315:183-244. https://doi.org/10.1016/bs.ircmb.2014.11.004

Annotating Nonpareil's genome

Objectives

Diagram based on Dominguez Del Angel *et al.* Ten steps to get started in Genome Assembly and Annotation. *F1000Research* 2018, 7(ELIXIR):148 (<u>https://doi.org/10.12688/f1000research.13598.1</u>)

- 1. Develop a gene prediction model for the genome assembly of 'Nonpareil'.
- 2. Develop a transcriptome with full length transcripts of genes in 'Nonpareil' using single-cell RNA sequencing technology.
- 3. Develop a gene functional annotation of the 'Nonpareil' genome.

Preliminary results

Using the current version of the 'Nonpareil' genome it has been found:

- 44.5% of the genome does not code for proteins, then this DNA may be:
 - Repetitive sequences
 - Transposable elements
- 55.5% (~165 Mb) of genome is coding DNA, and the first estimations suggest:
 - Approximately 28,000 genes
 - Approximately 32,000 proteins

The sequencing of RNA through this project will allow a more precise determination of the number of genes and number of proteins coded, as well as the annotation of such proteins.

How the sequences and annotated genome of Nonpareil will be used?

This resource will allow researchers

- Guide the development of resources tailored for almond
- Address relevant traits such as self-compatibility
- Enhance breeding strategies for tolerance/resistance to abiotic and biotic stressors
- Develop resources needed to address elusive issues such as non-infectious bud failure.

The ultimate goal is to enable the scientific community to perform genomicsinformed research. Our vision is that this tool will contribute to the formulation of solutions of almond production issues, and ensure the sustainability and resiliency of the California almond supply chain.

Thanks for your attention

Analysis of small RNA profiles to understand noninfectious bud failure syndrome in almonds

Kurtis Dluge, Julia Vo, Evan Dumas and Mysore R. Sudarshana USDA-ARS, Department of Plant Pathology, University of California, Davis, CA 95616

Noninfectious Bud Failure

- Differs from infectious bud failure as it is a genetic disease
- Does not spread through grafting but is not eliminated when planting from a clone.
- Nonpareil and Carmel cultivars are prone to NBF
- Can cause significant (40%) yield loss

Noninfectious Bud Failure

- It is likely that the gene(s) involved in the development of dormant buds into shoots might be differentially regulated or simply fail to express because of silencing.
- possible that epigenetic changes trigger expression of a transactivator that may cause premature programmed cell death.
- The degree of BF has been associated with DNA methylation and age
- Changes in methylation is likely to influence gene expression patterns.

Noninfectious Bud Failure

RNASeq and smallRNA profiling of trees with NBF has the ability to provide insights into the NBF phenomenon. Genetic elements either responsible for or influenced by the NBF and its epigenetic changes should exhibit differential expression. Shoots from Nonpareil and Carmel almond trees exhibiting BF and from control NonPareil plants without BF will be collected from trees at all four seasons. RNA-seq and sRNA-seq will be performed. Specific sequencing and assembly of almond chloroplast and mitochondria may help in identifying the problem

Goals and Current work

- Extract and sequence small RNA profile of almond trees exhibiting noninfectious bud failure.
- Conduct bioinformatics analysis of the small RNA fraction.
- Sequencing and assembly of chloroplast and mitochondrial genomes.
- Find differences in the RNA profile between normal and bud failure expressing almond trees.
- Develop genetic markers or altered ("resistant") cultivars based on this data.

Questions?